Physical Incorporation of Saccharin Molecules into Electrodeposited Soft High Magnetic Moment CoFe Alloys

نویسندگان

  • Stanko R. Brankovic
  • Ryan Haislmaier
  • Natasa Vasiljevic
چکیده

Incorporation of saccharin molecules has been studied during the galvanostatic deposition of 2.45 T CoFe alloys. The results indicate that the incorporation rate is strongly dependent on the concentration of saccharin in the plating solution. This dependence showed a pronounced maximum at Csac = 0.12 g L −1, which is a result with significant practical implications. A simple physical model was developed to describe this dependence, having an excellent qualitative agreement with experimental data. The corrosion properties and surface roughness of CoFe deposits were found to be a strong function of saccharin concentration in the plating solution, i.e., the incorporation rate of saccharin molecules. © 2007 The Electrochemical Society. DOI: 10.1149/1.2722038 All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfur and Saccharin Incorporation into Electrodeposited CoFe Alloys: Consequences for Magnetic and Corrosion Properties

Incorporation of sulfur into 2.4 T CoFe alloys during galvanostatic deposition has been studied. The results indicate that the main source of sulfur in magnetic deposit is saccharin used as an additive in the plating solution. The atomic percent of sulfur in deposit and the sulfur incorporation rate show strong dependence on saccharin concentration in the plating solution. This dependence has p...

متن کامل

Critical Parameters of Solution Design for Electrodeposition of 2.4 T CoFe Alloys

The electrodeposition of soft, high magnetic moment alloys has become the critical fabrication step in manufacturing of magnetic recording heads. The need for ultimately high magnetic moment alloys (2.4 T CoFe) and the electrodeposition process capable of delivering magnetic structures with dimension in the range of several tens of nanometers are the new tasks that have to be addressed if the f...

متن کامل

Electrodeposited Iron Group Thin-Film Alloys Structure-Property Relationships

Various iron group alloys have been electrodeposited and evaluated for properties including corrosion resistance, microstructure, electrical resistivity, magnetoresistance and other magnetic properties. Corrosion resistance depends on deposit composition and microstructure, which are controlled by solution composition and deposition variables. Maximum corrosion resistance was observed for 50Ni5...

متن کامل

Recent developments in high-moment electroplated materials for recording heads

The continuous and rapid increase of areal density in magnetic data storage systems required a continuous increase of the coercivity of the storage media. In order to be able to record on these everhigher-coercivity media, new soft magnetic materials for pole tips with increased magnetic moment had to be developed. Significant progress has been made during the last few years in electroplating a...

متن کامل

CoFe Layers Thickness and Annealing Effect on the Magnetic Behavior of the CoFe/Cu Multilayer Nanowires

CoFe/Cu multilayer nanowires were electrodeposited into anodic aluminum oxide templates prepared by a two-step mild anodization method, using the single-bath technique. Nanowires with 30 nm diameter and the definite lengths were obtained. The effect of CoFe layers thickness and annealing on the magnetic behavior of the multilayer nanowires was investigated. The layers thickness was controlled t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007